Economical Speed and Energetically Optimal Transition Speed Evaluated by Gross and Net Oxygen Cost of Transport at Different Gradients
نویسندگان
چکیده
The oxygen cost of transport per unit distance (CoT; mL·kg(-1)·km(-1)) shows a U-shaped curve as a function of walking speed (v), which includes a particular walking speed minimizing the CoT, so called economical speed (ES). The CoT-v relationship in running is approximately linear. These distinctive walking and running CoT-v relationships give an intersection between U-shaped and linear CoT relationships, termed the energetically optimal transition speed (EOTS). This study investigated the effects of subtracting the standing oxygen cost for calculating the CoT and its relevant effects on the ES and EOTS at the level and gradient slopes (±5%) in eleven male trained athletes. The percent effects of subtracting the standing oxygen cost (4.8 ± 0.4 mL·kg(-1)·min(-1)) on the CoT were significantly greater as the walking speed was slower, but it was not significant at faster running speeds over 9.4 km·h(-1). The percent effect was significantly dependent on the gradient (downhill > level > uphill, P < 0.001). The net ES (level 4.09 ± 0.31, uphill 4.22 ± 0.37, and downhill 4.16 ± 0.44 km·h(-1)) was approximately 20% slower than the gross ES (level 5.15 ± 0.18, uphill 5.27 ± 0.20, and downhill 5.37 ± 0.22 km·h(-1), P < 0.001). Both net and gross ES were not significantly dependent on the gradient. In contrast, the gross EOTS was slower than the net EOTS at the level (7.49 ± 0.32 vs. 7.63 ± 0.36 km·h(-1), P = 0.003) and downhill gradients (7.78 ± 0.33 vs. 8.01 ± 0.41 km·h(-1), P < 0.001), but not at the uphill gradient (7.55 ± 0.37 vs. 7.63 ± 0.51 km·h(-1), P = 0.080). Note that those percent differences were less than 2.9%. Given these results, a subtraction of the standing oxygen cost should be carefully considered depending on the purpose of each study.
منابع مشابه
Gait-specific energetics contributes to economical walking and running in emus and ostriches.
A widely held assumption is that metabolic rate (Ė(met)) during legged locomotion is linked to the mechanics of different gaits and this linkage helps explain the preferred speeds of animals in nature. However, despite several prominent exceptions, Ė(met) of walking and running vertebrates has been nearly uniformly characterized as increasing linearly with speed across all gaits. This descripti...
متن کاملPreferred speed and cost of transport: the effect of incline.
Preferred speed is the behavioral tendency of animals to utilize a relatively narrow set of speeds near the middle of a much broader range that they are capable of using within a particular gait. Possible explanations for this behavior include minimizing musculoskeletal stresses and maximizing energetic economy. If preferred speed is determined by energetic economy (cost of transport, C(T)), th...
متن کاملStudy on different solutions to reduce the dynamic impacts in transition zones for high-speed rail
One of the most important factors influencing the track maintenance is the transitions between parts of the track with different vertical stiffness. The dynamic...
متن کاملEffects of obesity and sex on the energetic cost and preferred speed of walking.
The metabolic energy cost of walking is determined, to a large degree, by body mass, but it is not clear how body composition and mass distribution influence this cost. We tested the hypothesis that walking would be most expensive for obese women compared with obese men and normal-weight women and men. Furthermore, we hypothesized that for all groups, preferred walking speed would correspond to...
متن کاملThermal dependence of endurance and locomotory energetics in a lizard.
The thermal dependencies of endurance and the rates of oxygen cnsumption (VO2) and carbon dioxide production (VCO2) were determined for the lizard Dipsosaurus dorsalis walking on a treadmill. The thermal dependencies of endurance and maximal VO2 (VO2 max) are nerly identical. The maximal sustainable speed and the speed at which VO2 max is attained at each experimental body temperature are the s...
متن کامل